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Célia Ghedini Ralha, and Li Weigang

Abstract— Inefficiency airport ground handing operations is
one of the main reasons for flight delays, as it comprises a
series of processes and collaborations between various airport’s
services. Using multi-agent planning (MAP) method, this paper
proposes a framework as a management system to improve
the airport ground handling management (GHM). With the
identification of the services and resources related to GHM, the
forward MAP approach is applied to coordinates the tasks and
planning in order to reduce both the delays and the operating
cost. In this case, the key contribution includes MAP model for
airport ground handling operations under a unified framework
compatible with the airport collaborative decision making (A-
CDM) strategy.

Index Terms— Multi-Agent Planning, Airport Collaborative
Decision Making, Airport Ground Handling Management.

I. INTRODUCTION

Air traffic flow management (ATFM) is a challenging area
for the application of artificial intelligence, operation research
and other techniques due to the continuous increase of air
traffic flows and the amount of the involved data [1], [2],
[3]. Today, delays and congestion have become a common
situation resulting in high financial and social cost for airlines
and passengers [4], [5]. For example, in 2014, approximately
23% of the flights in the United States were delayed by more
than 15 minutes, while another 3% were canceled [6].

One way to reduce flight delays is to expand the airport
infrastructure. However, this usually has a high financial cost.
Furthermore it demands years to be successfully implemented.
Indeed, there is a consensus among experts in the air
transportation industry that infrastructure development alone
will not be enough to satisfy the increasing in delay above
current levels [7], [2]. If delays resulting from bad weather
are mostly unavoidable, the advanced performance of traffic
management at airport is needed by searching new operational
approaches for improving the overall airport performance.

Ground handling management (GHM) comprises various
services required by airplanes while they are on the ground,
parked at a terminal gate or on a remote position in an
airport. This includes the processing of boarding/de-boarding
passengers, baggage and freight, as well as the maintenance
of the aircraft itself (e.g., fueling, cleaning, sanitation, among
others) [8].
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In most airports with intense traffic movement, there is
a considerable number of airplanes landing and departing
everyday. However, some ground operations related to air-
planes have to be done before departure, including loading
and unloading of luggage, refilling of fuel and water, safety
check, among others.

Airport Collaborative Decision Making (A-CDM) is a
wide accepted concept which creates a common ground
management procedure for the different components of the
Air Transportation System (ATS). This concept is based on an
improved communication between the different stakeholders
of the airport (e.g., Air Traffic Control, Airport Authority,
and Airlines). CDM has already been applied to some major
airports in Europe and in the United States; and it has
helped to improve air traffic management performance. As a
result, it has received the attention of different stakeholders.
Nevertheless, within the turnaround process of aircraft at
airports, GHM of aircraft has not been well developed
specifically in the A-CDM procedure.

Multi-agent planning (MAP) is a method of Artificial
Intelligence and refers to the problem solving by planning
in domains where several independent stakeholders (agents)
plan and act together. MAP is concerned with planning by
multiple agents, i.e., distributed planning and planning for
multiple agents. It can involve the planning of agents for a
common goal, for which an agent coordinates the plans with
others, or agents refine their own plans while negotiating over
tasks or resources [9].

The main objective of this paper is to model the ground
handling (GHM) operations under a unified framework,
by using Multi-agent planning method to improve GHM
performance. The new model is proposed to be compatible
with the CDM procedure. It also seeks in particular to plan
and allocate a number of different ground services to an flight
in order to reduce its waiting time in an airport.

The reminder of this paper is organized as follows.
Section II describes some related works in the domain of
airport ground handling. Section III presents the environment
followed by our MAP model in Section IV. Then, the
experimental results are discussed in Section V. Finally,
Section VI concludes this paper and presents envisioned
future works.

II. RELATED WORKS

Du et al. [10] studied the fuel ramp operations and
considered the scheduling problem of fueling vehicles and
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proposed a solution approach based on the Vehicle Routing
Problem with Tight Time Windows (VRPTTW) with multiple
objectives. Once merging some of these objectives into a
single one and transforming the others in level constraints,
this problem can be formulated as a large Integer Linear
Optimization Problem. Then, they adopted a specialized Ant
Colony Optimization (ACO) to try to solve efficiently this
multi objective combinatorial optimization problem.

Clausen et al. [11] formulated the problem of managing
the fleet of ground vehicles in charge of transporting baggage
for connecting passengers between their arrival and departure
flights in an airport as a cumbersome Integer Programming
problem where N baggage must be transported using K
identical vehicles of capacity Q. Considering the size of real
life instances and the dynamic aspect of the problem, a greedy
algorithm was proposed to solve approximately this problem.

A more sophisticated solution was proposed by Ho et
al. [12] to tackle the airline catering operations including
the staff workload. They considered the problem as a
manpower allocation problem with time windows and job-
skill constraints. The optimization objective consists in the
maximization of the total number of assigned jobs. They
presented a comparison between Tabu Search and Simulated
Annealing approaches to solve the problem.

Dohn et al. [13] concentrated on the management of ground
handling manpower by considering that ground handling is
managed by a central entity responsible for dynamically
building up the teams with the different skills, which will be
in charge of each arriving or departing aircraft. This problem
is close to the vehicle routing problem with time windows.
So they adopted a Column Generation technique associated
with a Branch and Bound technique, resulting in a Branch
and Pricing approach. The formulated problem is NP-Hard.

The decentralized solution approach of the global ground
handling assignment problem has been coped in two ways:
(a) by considering that the global ground handling scheduling
problem is an instance of a multi-project scheduling problem
and (b) by considering that it is a distributed decision making
problem. A representative work for this approach is the one
of Mao et al. [14], which proposed a solution to solve the
airport ground handling scheduling problem under uncertainty
by considering that the global ground handling scheduling
problem is an instance of a multi-project scheduling problem
(MPSP), so, they considered the aircraft as a project agent
which is composed by a set of activities, and the ground
handling providers as resource agents, each one is responsible
of a resource which performed a specific type of activity.

Following this approach, Ansola et al. [15] considered
the ground handling processes as a distributed decision
support system. To deal with this problem, they created a
new theoretical and experimental Multi-Agent System called
MAS-DUO. The architecture of this new MAS was based
on a combinations of many existing methodologies. The
MAS-DUO is a division of the organization model in two
platforms: system of information model and physical model.
The communication between the two platforms was assured by
using of an interaction protocol based on sharing parameters

of the Markov reward function. This new organization was
tested to manage the ground handling operations on the
Ciudad Real Central Airport.

Relating to the airport GHM, Fitouri-Trabelsi et al. [8]
proposed a hierarchical structure to organize the ground han-
dling management compatible with the A-CDM concept. The
proposed structure introduces a ground handling coordinator
(GHC) which is considered as an interface for communication
between the partners of the A-CDM and the different ground
handling managers (GHMs). This hierarchical structure allows
sharing information with partners in the A -CDM on the one
side and on the other side, interacting with GHMs. The global
objective is to turn available the ground handling resources
so that arriving and departing flight are serviced with as little
delay as possible.

According to Fitouri-Trabelsi et al. [8], the considered
applications of Operational Research to solve ground handling
operations problems at the operations level, treat in general a
nominal problem with no perturbation to the aircraft arrival
schedule or to the operations of the different ground fleets.
Even in this nominal case, the corresponding mathematical
programming problems are of hard complexity class with big
difficulties to get exact solutions for real size problems.

This research introduces the MAP method to manage the
ground handling operations. The proposed framework uses a
social collaborative approach to plan by multiple intelligent
entities to work together for planning tasks that they are not
able to solve by themselves, or to at least accomplish them
better by cooperating [9]. MAP method places the focus on
the collective effort of multiple agents to accomplish tasks
by combining their knowledge and capabilities.

III. WORKING SCENARIO AND FORMAL MODELING

A. Multi-Agent Planning Method

Multi-Agent Planning (MAP) method refers to multiple
agents planning and acting collaboratively. More specifically,
agents interact to design a plan that none of them could
have generated individually in most cases. During the plan
construction, the agents keep in mind that the devised plan will
be jointly executed by themselves such that they collectively
achieve their individual and common goals [16].

In MAP, a planning process is distributed to across several
planning/executing agents that devise a joint, non-linear plan
which will be later executed by the same agents. It is assumed
that the agents are specifically designed to be cooperative, but
they can also have their own private goals. Agents’ decisions
must not only be derivative from the collective goals but also
from the other agents’ strategy [16].

A MAP problem can be described as follows: given an
initial state, a set of global goals, a set of (at least two)
agents, each agent with a set of its capabilities (the actions
they can perform) and (probably) its private goals, will find
its action by a plan. These plans together are coordinated and
the problem’s global goals are met [9].
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The complexity of a MAP task is often described by means
of its coupling level [16], which is measured as the number
of interactions that arises among agents during the resolution
of a MAP task. According to this parameter, MAP tasks can
be classified into loosely-coupled tasks (which present a few
interactions among agents) and tightly-coupled tasks (which
involve many interactions among agents). Therefore, agents
in a MAP context want to minimize the information they
share with each other, either for strategic reasons or simply
because it is not relevant for the rest of the agents in order
to address the planning task.

In the literature, there are two main approaches for solving
MAP tasks. One is the centralized strategy and the other is the
decentralized. On the one hand, the centralized relies on an
intermediary agent that must have complete information about
the tasks. The adoption of a centralized approach may help on
improving the planner performance by taking advantage of the
inherent structure of the MAP tasks [17], however, this may
represent an issue when there are sensible data that must be
kept private [18]. The distributed or decentralized approach,
on the other hand, spreads the planning responsibility among
different agents, which must coordinate their local solutions,
if necessary [19].

In this paper, Forward MAP (FMAP) is used as the basic
model, since it is a domain-independent MAP system that is
designed to cope with a great variety of planning tasks of
different complexity and coupling level.

B. Forward Multi-Agent Planning
FMAP is a fully distributed method that interleaves plan-

ning and coordination by following a cooperative refinement
planning strategy. This search scheme allows us to efficiently
coordinate agents’ actions in any type of planning task (either
loosely-coupled or tightly-coupled) as well as to handle
cooperative goals, i.e., goals that cannot be solved individually
by any agent since they require the cooperation of specialized
agents [16].

The FMAP model is a multi-agent refinement planning
model, which is a general method based on the refinement of
the set of all possible plans. The internal reasoning of agents
in FMAP model is configured as a Partial-Order Planning
(POP) search procedure. Other local search strategies are
applicable, as long as agents build partial-order plans. The
following concepts and definitions are standard terms from
the POP paradigm [20], which have been adapted to state
variables. Additionally, definitions also account for the multi-
agent nature of the planning task and the local views of the
task by the agents.

A partial-order plan or partial plan is a tuple
∏

= <
∆, OR,CL >. ∆ = {α|α ∈ A} is the set of actions in

∏
.

OR is a finite set of ordering constraints (≺) on ∆. CL is a
finite set of causal links of the form α

<v,d>→ β or α
<v,¬d>→ β,

where α and β are actions in ∆. A causal link α
<v,d>→ β

enforces preconditions < v, d >∈ PRE(β) through an effect
(v = d) ∈ EFF (α). Similarly, another causal link α

<v,¬d>→
β enforces preconditions < v,¬d >∈ PRE(β) through an
effect (v 6= d) ∈ EFF (α) or (v = d′) ∈ EFF (α), d′ 6= d.

An empty partial plan is defined as
∏

0 = <
∆0, OR0, CL0 >, where OR0 and CL0 are empty sets, and
∆0 contains only the fictitious initial action αi. A partial plan∏

for a task TMAP will always contain αi.
The introduction of new actions in a partial plan may

trigger the appearance of flaws. There are two types of flaws
in a partial plan: preconditions that are not yet solved (or
supported) through a causal link, and threats. A threat over
a causal link α

<v,d>→ β is caused by an action γ that is not
ordered w.r.t. α or β and might potentially modify the value
of v ((v 6= d) ∈ EFF (γ) or (v = d′) ∈ EFF (γ), d′ 6= d),
making the causal link unsafe. Threats are addressed by
introducing either an ordering constraint γ ≺ α (this is
called demotion because the causal link is posted after the
threatening action) or an ordering β ≺ γ (this is called
promotion because the causal link is placed before the
threatening action).

A flaw-free plan is a threat-free partial plan in which the
preconditions of all the actions are supported through causal
links.

Planning agents in FMAP model cooperate to solve MAP
tasks by progressively refining an initially empty plan

∏
until

a solution is reached. The definition of refinement plan is
closely related to the internal forward-chaining partial-order
planning search performed by the agents.

Refinement planning is a technique that is widely used by
many planners, specifically in anytime planning, where a first
initial solution is progressively refined until the deliberation
time expires [18].

A refinement plan
∏

r = < ∆r, ORr, CLr > over a
partial plan

∏
= < ∆, OR,CL > is a flaw-free partial

plan that extends
∏

, i.e., ∆ ⊂ ∆r, OR ⊂ ORr and
CL ⊂ CLr.

∏
r introduces a new action α ∈ ∆r in

∏
,

resulting in ∆r = ∆
⋃
α. All the preconditions in PRE(α)

are linked to existing actions in
∏

through causal links;
i.e., all preconditions are supported: ∀p ∈ PRE(α),∃ β p→
α ∈ CLr, where β ∈ ∆. Refinement plans in FMAP model
include actions that can be executed in parallel by different
agents.

Finally, a solution plan for TMAP is a refinement plan
∏

= < ∆, OR,CL > that addresses all the global goals G of
TMAP . A solution plan includes the fictitious final action αf

and ensures that all its preconditions (note that PRE(αf ) =
G) are satisfied; that is, ∀g ∈ PRE(α), ∃β g→ αf , β ∈ ∆,
which is the necessary condition to guarantee that

∏
solves

TMAP . Every time agent i refines a partial plan by introducing
a new action α ∈ Ai, it communicates the resulting refinement
plan to the rest of the agents in TMAP . In order to preserve
privacy, agent i will only communicate to agent j the fluents
in action α whose variables are common to both agents.

FMAP is based on a cooperative refinement planning
procedure in which agents jointly explore a multi-agent,
plan-space search tree. A multi-agent search tree is one
in which the partial plans of the nodes are build with the
contributions of one or more agents [16]. Agents in FMAP
keep a copy of the multi-agent search tree, storing the local
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view they have of each of the plans in the tree nodes. Given
a node

∏
in the multi-agent search tree, an agent i maintains

viewi(
∏

) in its copy of the tree. Likewise, FMAP relies
on a theoretical model which defines a more sophisticated
notion of privacy than most of the existing MAP systems
and it is a complete and reliable planning system that has
proven to be very competitive when compared to other state-
of-the-art MAP systems. The experimental results show that
FMAP is particularly effective for solving tightly-coupled
MAP problems with cooperative goals [16].

C. Specification of MAP Tasks in GHM

A MAP task in FMAP is defined as a tuple TMAP =
< AG,V, I,G,A >, where:
• AG = {1, ..., n} is a finite non-empty set of agents.
• V =

⋃
i∈AG V

i. It means that V i is the set of state
variables known to an agent i.

• Each state variable v is associated to a finite domain Dv ,
of mutually exclusive values that refer to the objects in
the world. Di

v ⊆ Dv is the set of values of the variable
v that are known to agent i. I =

⋃
i∈AG I

i is a set of
fluents1 that defines the initial state of TMAP .

• G is the set of goals of TMAP , i.e., the values of the
state variables that agents have to achieve in order to
accomplish TMAP .

• A =
⋃

i∈AGA
i is the set of planning actions of the agents.

In this case, A includes two actions αi and αf that do
not belong set of actions from the agent. In this case,
αi represents the initial state of TMAP , i.e., PRE(αi)
= ∅ and EFF (αi) = I , while αf represents the global
goals of TMAP , i.e., PRE(αf ) = G, and EFF (αf ) =
∅. An action is a tuple α = < PRE(α), EFF (α) >,
where, PRE(α) is a finite set of fluents that represents
the preconditions of α; and EFF (α) is a finite set of
positive and negative variable assignments that model
the effects of α.

Following the settings used in FMAP and applying it to
GHM, we have more detailed descriptions:
• AG = {ag1, ..., agn} represents ground handling man-

agers, which are defined as the planning agents. Each
of these agents has vehicles resources to serve flights.

• Flights are variables ∈ V , assigned to vehicle resource
d ∈ Dv, which describes the realization of the flight
tasks by vehicles. The planning agents know all these
flights.

• Each agent has two actions: move− vehicle(from, to)
and perform− task(flight).
The preconditions and the effects include:
– PRE(move-vehicle) = {(be at location FROM)};
– PRE(perform-task) = {(at same location of flight),

(flight with task not performed)};
– EFF(move-vehicle) = {(not be at location FROM),

(be at location TO)};
– EFF(perform-task) = {(flight with task performed)};

Agents in our model interact with each other by sharing
information on their actions. So each agent will take a time

1variable assigned to some domain value, i.e, v = d, v ∈ V, d ∈ Dv

t1 to move vehicle resource to flight, a time t2 to perform the
task for a flight, and needs another ∆t for communication.
So the t1 + t2 + ∆t is the time of the agent i needing to
complete a task for a flight j.

IV. PROPOSED MAP MODEL FOR GHM

In order to compute an optimal plan for the MAP task
using tuple TMAP at the airport ground handling management
scenario, Airlines share flight plans between ground handling
managers as presented in Figure 1.

Figure 1 shows the organization of the proposed MAP
model, whose main components are listed as follows.

Fig. 1. Overview of the MAP model

The agents in the MAP model are classified into two
categories according to the techniques employed in their
decision making: (a) Airlines and ATC: are reactive
agents. The Airlines send the data to the ground handling
managers on scheduled arrival and departure times and
(b) Ag1, Ag2, ..., Agn, represent ground handling managers,
which are defined as the planning agents. They have a
principal function in Planning operations for the ground
handling manager agent to solve its Planning problem and
to cover all planned demands for its services.

Then, each manager will knows all flights. However, this
sharing, by itself, does not imply to optimal plans but takes
each manager to build its optimal plan from their vehicle
resources and the flight plan received.

Since the sharing process must be done aiming for the
global solution, must have a process of coordination of the
plans of managers to generate an optimal solution plan.
Therefore, we propose a model to choose goals and delegate
them to managers achieving a optimal multi-agent plan
through distributed cooperative multi-agent planning.

The decision making considered is to solve the global
planning of ground handling resources. The idea is to order
arriving and departing aircraft according to their planned start
time of the corresponding ground operations (either arrival
ground handling tasks or departure grand handling tasks).
Then each ground handling manager agent will process in
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this order each aircraft ground handling activity by linking
each resource to aircraft to build a ground handling duty.

Starting from an empty base plan
∏

0, the following
iteration composes the planning operations:

1) Each ground handling manager agent, through its em-
bedded partial-order planner, expand

∏
0 and generate

all its refinement plans over
∏

0, i.e., the agent, using
its resources vehicles, performs actions move-vehicle or
perform-task by linking each resources vehicles to flight.
For example if r is a resource vehicle of the agent and
f a flight, the agent has two actions: move-vehicle (r, f)
and perform-task (f). These refined plans are candidates
to be chosen as the next base plan.

2) Each ground handling manager agent i evaluates its re-
finement plans

∏
r by applying a classical A∗ evaluation

function (f(
∏

r) = g(viewi(
∏

r)) + h(viewi(
∏

r))).
The expression g(viewi(

∏
r)) stands for the number

of actions of
∏

r and h(viewi(
∏

r)) applies the Do-
main Transition Graph based (DTG-based) heuristic
approach [16] to estimate the cost of reaching a solution
plan from

∏
r.

3) Each ground handling manager agent communicates its
refinement plans to the rest of the ground handling man-
agers agents. The information that an ground handling
manager agent i communicates about its plan

∏
r to the

rest of the ground handling managers agents depends
on the level of privacy specified with each of them, i.e.,
more specifically, whereas f ∈ V and ri is a vehicle
resource of ground handling manager agent i, the fluent
(f, ri) is partially private to ground handling manager
agent i w.r.t. ground handling manager agent j. Instead
of (f, ri), ground handling manager agent i will send
a fluent (f,⊥) to ground handling manager agent j,
where, ⊥ indicates that f is not assigned any of the
vehicles resources known to ground handling manager
agent j. Along with the refinement plan

∏
r, ground

handling manager agent i communicates the result of
the evaluation of

∏
r, f(

∏
r)

Once the iteration is completed, the leadership is handed
to an ground handling manager agent, which adopts the
coordinator role, and a new iteration starts. The coordinator
agent selects the open node

∏
that minimizes f(

∏
) as the

new base plan
∏

b, and then, ground handling managers
agents proceed to expand it. This iterative process carries on
until

∏
b becomes a solution plan to support the final action

αf . When all the open nodes have been visited, in this case,
the ground handling managers agents will have explored the
complete search space without finding a solution for the MAP
task TMAP

A refinement plan
∏

is evaluated only by the ground
handling manager agent that generates it. The ground handling
manager agent communicates

∏
along with f(

∏
) to the

rest of the ground handling managers agents. Therefore, the
decision on the next base plan is not affected by the ground
handling manager agent that plays the coordinator role since
all of the ground handling managers agents manage the same

f(
∏

) value for every open node
∏

.

V. EXPERIMENTAL RESULTS

In this step, the research focuses on the optimization of
vehicles planning for ground handling services. Therefore,
it needs to filter out the unrelated activities about the use
of vehicles and focus on optimizing the activities involving
the services vehicles. The research also considers the de-
boarding/boarding vehicles, refueling vehicles and catering
vehicles, which will be focused in the optimization model.
Thus, our scenario comprises four agents: boarding agent,
de-boarding agent, refueling agent, and catering agent.

Table I shows the time duration of the actions of each
agent; and Figure 2 presents the structure assumed for the
ground handling activities.

TABLE I
TIME DURATION IN MINUTES OF THE ACTIONS OF AGENTS

Action Boarding De-boarding Refueling Catering

Move-vehicle 3 3 3 3
Perform-task 15 7 9 10

Fig. 2. Structure of the ground handling activities

The set of tests compares the quality of the solution plans
obtained by the proposed MAP model with ones generated
by a centralized approach. The testbed includes a different
number of flights of increasing difficulty. MAP tasks have
been tried out with the MAP model using DTG-based heuristic
approach shown in [16] and an A* search strategy. As for
centralized tasks, they have been solved by the MAP model
which is configured as a single-agent POP, using again DTG-
based heuristic approach and an A* search process.

TABLE II
SINGLE-AGENT VS. MULTI-AGENT PLANNING COMPARISON

Mult-Agent Planning Single-Agent Planning
# Flights # Actions Planning time # Actions Planning time

5 40 205 40 265
6 48 246 48 318
7 56 287 56 371
8 64 328 64 424
9 72 369 72 477
10 80 410 80 530
40 320 1640 320 2120

Table II shows the obtained results by the simulation.
#Actions and Plan. times refer to the number of actions
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and planning times in minutes of the devised solution plan.
task As it can be observed, both approaches obtain the same
results in terms of the number of actions of the solution plans.

However, the biggest difference comes in terms of the
planning time. The planning time takes into account the
actions that can be performed simultaneously in order to
measure the time necessary to execute the plan. The proposed
MAP approach enforces the operation in parallelism, since
the different planning entities devise different parts of the
plan that can be executed at the same time. The centralized
approach is not as effective at introducing parallel actions.
In conclusion, the proposed MAP approach obtains better
solution plans in terms of planning time.

VI. CONCLUSION

To improve the efficiency of airport ground handing
operations, in this paper, we presented an approach by
multi-agent planning (MAP) for re-organizing the airport
ground handling management. The developed model follows
a refinement planning strategy. In this case, the solutions rely
on progressive refinement of partial-order plans.

The model uses tightly-coupled tasks domains, where the
agents can interact each other in order to achieve the goal
state. The amount of exchanged messages may become the
biggest obstacle but agents in the proposed model want to
minimize the information that they share with each other
either for strategic reasons.

Preliminary results show that our model helps on dealing
with the airport ground handling management planning.
However, it still demands more case studies to improve the
applicability in real scenarios and we leave this for future
work.
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